

NLD-1 C-0 G-1

Internationale Scheikunde Olympiade 2021 Japan 53ste IChO2021 Japan 25 juli - 2 augustus 2021 https://www.icho2021.org

Algemene Instructies

- U mag alleen een pen gebruiken om het antwoord op te schrijven.
- Uw rekenmachine mag niet programmeerbaar zijn.
- Dit examen heeft **9 opgaven**.
- U kunt de opgaven in willekeurige volgorde maken.
- U heeft **5 uur** om alle opgaven te maken.
- U mag pas **beginnen** nadat het **START**-sein is gegeven.
- Alle uitwerkingen moeten in de daarvoor bestemde antwoordvakken met pen op de **antwoordbladen** worden geschreven. Gebruik de achterkant van de examenbladen als u kladpapier nodig heeft. Houd er rekening mee dat antwoorden die buiten de antwoordvakken zijn geschreven, niet worden beoordeeld.
- Wanneer een berekening vereist is, geef deze berekeningen dan in de daarvoor bestemde vakken. Volle punten voor juiste antwoorden worden alleen gegeven als de volledige uitwerking gegeven is.
- De surveillant geeft een sein wanneer u nog **30 minuten** heeft tot het **STOP**-sein.
- U **moet stoppen** met werken wanneer het **STOP**-sein gegeven wordt. Als u niet stopt met schrijven, wordt uw examen ongeldig verklaard.
- De officiële Engelse versie van dit examen is alleen ter verduidelijking op aanvraag beschikbaar.
- Je mag je werkplek niet verlaten zonder toestemming. Als je hulp nodig hebt (kapotte rekenmachine, toiletbezoek, etc.), steek dan je hand op en wacht tot een surveillant arriveert.

SUCCES!

Opgaven- en Beoordelingsinformatie

	Titel	Totale Score	Percentage
1	Waterstof aan het oppervlak van een meetaal	24	11
2	Isotopen Tijdcapsule	35	11
3	Wet van Lambert-Beer?	22	8
4	Redoxchemie van Zink	32	11
5	Mysterieus Silicium	60	12
6	De Vastestofchemie van Overgangsmetalen	45	13
7	Spelen met niet-benzenoïde aromatische verbindingen	36	13
8	Dynamische Organische Moleculen en hun Chiraliteit	26	11
9	Wel of geen capsule	23	10
		Totaal	100

Fysische Constanten en Vergelijkingen

Constanten

Lichtsnelheid in vacuüm	$c = 2.99792458 imes 10^8 \mathrm{m \ s^{-1}}$
Constante van Planck	$h = 6.62607015 \times 10^{-34} \mathrm{J \; s}$
Elementaire lading	$e = 1.602176634 \times 10^{-19} \mathrm{C}$
Massa van een elektron	$m_{\rm e} = 9.10938370 \times 10^{-31}{\rm kg}$
Elektrische constante (permittiviteit van vacuüm)	$\varepsilon_0 = 8.85418781 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
Getal van Avogadro	$N_{\rm A} = 6.02214076 imes 10^{23} { m mol}^{-1}$
Constante van Boltzmann	$k_{\rm B} = 1.380649 \times 10^{-23} {\rm J} {\rm K}^{-1}$
Constante van Faraday	$F = N_{\rm A} \times e = 9.64853321233100184 \times 10^4 {\rm C \ mol^{-1}}$
Gasconstanto	$R = N_{\rm A} imes k_{\rm B} = 8.31446261815324 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$
Gasconstante	$= 8.2057366081 imes 10^{-2} \mathrm{L} \;\mathrm{atm} \;\mathrm{K}^{-1} \mathrm{mol}^{-1}$
Atomaire massa-eenheid	$u = 1 \mathrm{Da} = 1.66053907 \times 10^{-27} \mathrm{kg}$
Standaarddruk	$p=1bar=10^5Pa$
Atmosferische druk	$p_{atm} = 1.01325 \times 10^5 \mathrm{Pa}$
Nul graden Celsius	$0 ^{\circ}\mathrm{C} = 273.15\mathrm{K}$
Ångström	$1 \text{ Å} = 10^{-10} \text{ m}$
Picometer	$1 \mathrm{pm} = 10^{-12} \mathrm{m}$
Elektronvolt	$1 \mathrm{eV} = 1.602176634 \times 10^{-19} \mathrm{J}$
Part-per-million	$1 ppm = 10^{-6}$
Part-per-billion	$1 ppb = 10^{-9}$
Part-per-trillion	$1 \text{ppt} = 10^{-12}$
pi	$\pi = 3.141592653589793$
Grondtal van de natuurlijke logaritme (eulergetal)	e = 2.718281828459045

Vergelijkingen

De ideale gaswet	PV = nRT , hierin is <i>P</i> de druk, <i>V</i> het volume, <i>n</i> de hoeveelheid stof en <i>T</i> is de abso-
	lute temperatuur van het ideale gas.
Wet van Coulomb	$F = k_{e} \frac{q_1 q_2}{r^2}$
	, hierin is F de elektrostatische kracht, $k_{\rm e} (\simeq 9.0 \times 10^9 {\rm N}{\rm m}^2{\rm C}^{-2})$ is de constante van Coulomb, q_1 en q_2 zijn de grootten van de ladingen, en r is de afstand tussen de ladingen.
De eerste wet van de	$\Delta U = q + w$
thermodynamica	, hierin is ΔU de verandering in de inwendige energie, q de toegevoegde warmte en w de verrichte arbeid.
Enthalpie H	H = U + PV
Entropieformule van	$S = k_{B} \ln W$
Boltzmann	, hierin is W het aantal microtoestanden.
De verandering van en-	$\Delta S = \frac{q_{rev}}{T}$
tropie ΔS	, hierin is $q_{\sf rev}$ de warmte voor het omkeerbare proces.
Gibbs vrije energie G	G = H - TS
	$\Delta_{r}G^{\circ} = -RT\ln K = -zFE^{\circ}$
	, hierin is K de evenwichtsconstante, z het aantal elektronen en E° de standaardelektrodenetentiaal
	$\Delta C = \Delta C^{\circ} + BT \ln 0$
Reactiequotient Q	$\Delta_{r}G = \Delta_{r}G + RT \prod Q$ Voor een reactie
	$a\mathbf{A} + b\mathbf{B} \Rightarrow c\mathbf{C} + d\mathbf{D}$
	$\left[C\right]^{c}\left[D\right]^{d}$
	$Q = \frac{(1 + 1)^{a}}{[\mathbf{A}]^{a} [\mathbf{B}]^{b}}$
	, hierin is [A] de concentratie van A.

Warmteverandering Δq	$\Delta q = nc_{\rm m} \Delta T$
	, merin is c_m de temperatuur-onamankenjke molaire warmtecapaciteit.
Wet van Nernst voor re-	$E = E^{\circ} + \frac{RI}{zF} \ln \frac{C_{\text{ox}}}{C_{\text{rod}}}$
doxreacties	, hierin is C_{ox} de concentratie van de oxidator en C_{red} de concentratie van
	de reductor.
Vergelijking van Arrhe-	$k = A \exp\left(-\frac{E_a}{BT}\right)$
nius	, hierin is k de reactiesnelheidsconstante, A de pre-exponentiële factor en
	E_{a} is de activeringsenergie.
	$\exp^{a}(x) = e^{x}$
Wet van Lambert-Beer	$A = \varepsilon lc$
	, hierin is A de extinctie, ε de molaire extinctiecoëfficiënt, l de optische
	weglengte en c de concentratie van de oplossing.
Henderson-Hasselbalch	Voor een evenwicht
veraeliikina	$HA \rightleftharpoons H^+ + A^-$
5,7,5	, met de evenwichtsconstante is K_a geldt,
	$\left(\begin{bmatrix} A^{-} \end{bmatrix} \right)$
	$pH = pK_a + \log\left(\frac{1}{ HA }\right)$
Energie van een foton	$E = h\nu = h\frac{c}{\lambda}$
	, hierin is $ u$ de frequentie en λ de golflengte van het licht.
De som van een geome-	Als $x \neq 1$,
trische reeks	$1 + x + x^{2} + \dots + x^{n} = \sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$
Benaderingsvergelijking	Als $x \ll 1$,
die kan worden gebruikt	$\frac{1}{1-x} \simeq 1+x$
om opgaven op te	1-x
lossen	

G0-6 Nederlands (Netherlands)

NLD-1 C-0 G-6

Periodiek Systeem

18	² Helium 4.003	10 Neon 20.180	¹⁸ Ar Argon 39.948	36	Krypton 83.798	Xe Xe	Xenon 131.293	86 Bn	Radon [222]	118 Oganesson [294]					
17		9 F Fluorine 18.998	17 CI Chlorine 35.452	35	Bromine 79.904	- 23	lodine 126.904	At At	Astatine [210]	TS Tennessine [293]	۲n	Lutetium 174.967	103	۲	Lawrencium [262]
16		8 O Oxygen 15.999	16 Sultur 32.068	34	Selenium 78.971	Te	Tellurium 127.60	Po Po	Polonium [210]	116 LV Livermorium [293]	^{٥۲}	Ytterbium 173.045	102	٩	Nobelium [259]
15		N N Nitrogen 14.007	15 P Phosphorus 30.974	33	AS Arsenic 74.922	s1 Sb	Antimony 121.760	Bi 83	Bismuth 208.98	115 MC Moscovium [289]	°° Tm	Thulium 168.934	101	Md	Mendelevium [258]
14		6 C Carbon 12.011	14 Silicon 28.085	32	Germanium 72.630	s n	т _{іп} 118.710	Pb	Lead 207.2	114 Fl Flerovium [289]	е В	Erbium 167.259	100	Е Н	Fermium [257]
13		5 B Boron 10.814	13 Aluminium 26.982	31	Gallium 69.723	⁴⁹	I14.818	H8 H	Thallium 204.384	113 Nhonium [278]	67 Ho	Holmium 164.930	66	Ë	Einsteinium [252]
12			1	1 3	Zn ^{Zinc} 65.38	⁴⁸ Cd	Cadmium 112.414	⁸⁰ Hg	Mercury 200.592	Copernicium Copernicium [285]	90 D	Dysprosium 162.500	86	ŭ	californium [252]
11		active element]		⁵³ (CU Copper 63.546	Ag	silver 107.868	Au	Gold 196.967	111 Rg Roentgenium [280]	^{ده} Tb	Terbium 158.925	67	ଇ	Berkelium [247]
10		s for the radio		28	N Nickel 58.693	Pd Pd	Palladium 106.42	Pt	Platinum 195.084	110 DS Darmstadtium [281]	64 Gd	Gadolinium 157.25	96	ő	curium [247]
6		[in parenthesi		27	CO Cobalt 58.933	45 Rh	Rhodium 102.906	77 Ir	Indium 192.217	109 Meitnerium [276]	۳ Eu	Europium 151.964	95	Am	Americium [243]
8		atomic number Symbol name atomic weight		1 ²⁶	Fe Iron 55.845	⁴⁴ Bu	Ruthenium 101.07	_™ Os	Osmium 190.23	108 Hssium [277]	sm Sm	samarium 150.36	94	Pu	Plutonium [239]
7	Key:	113 Nhonium [278]		25	NIN Manganese 54.938	TC ⁴³	Technetium [99]	75 Re	Rhenium 186.207	107 Bh Bohrium [272]	Pm 61	Promethium [145]	93	ď	Neptunium [237]
9				24	Cr chromium 51.996	⁴² Mo	Molybdenum 95.95	74 W	Tungsten 183.84	106 Sg Seaborgium [271]	°9 N	Neodymium 144.242	92	∍	Uranium 238.029
5				53	V Vanadium 50.942	⁴¹ Nb	Niobium 92.906	™ Ta	Tantalum 180.948	105 Db Dubnium [268]	⁶⁸ ۲	Praseodymium 140.908	91	Ра	Protactinium 231.036
4				52 •	Titanium 47.867	40 Zr	Zirconium 91.224	Hf 72	Hathium 178.49	104 Rf Rutherfordium [267]	e s	Cerium 140.116	06	Th	Thorium 232.038
e				21	Scandium 44.956	ح 39	Yttrium 88.906	⁵⁷⁻⁷¹ La-Lu	Lanthanoids	89-103 AC-Lr Actinoids	57 La	Lanthanum 138.905	68	Ac	Actinium [227]
2		4 Be Beryllium 9.012	12 Mg Magnesium 24.306	²⁰	Calcium Calcium 40.078	°s Sr	Strontium 87.62	Ba Ba	Barium 137.327	B8 Radium [226]	⁵⁷⁻⁷¹ La-Lu :	Lanthanoids	89-103	Ac-Lr	Actinoids
+	¹ Hydrogen 1.008	3 Li Lithium 6.968	11 Na sodium 22.990	19	Potassium 39.098	37 Rb	Rubidium 85.468	CS CS	Caesium 132.905	87 Fr Francium [223]					

NLD-1 C-0 G-7

¹H NMR Chemical Shifts

Waterstof aan het oppervlak van een metaal

11% van het totaal									
Vraag	A.1	A.2	B.1	B.2	B.3	B.4	Totaal		
Punten	6	4	5	3	3	3	24		
Score									

Er wordt verwacht dat waterstof een toekomstige energiebron is die onafhankelijk is van fossiele brandstoffen. Hier gaan we de waterstofopslag in een metaal bestuderen, die samenhangt met waterstoftransport en -opslag technologieën.

Onderdeel A

Waterstof wordt geabsorbeerd in de bulk van een metaal via het oppervlak van dat metaal. We bekijken eerst het adsorptieproces van waterstof aan het metaaloppervlak: $H_2(g) \rightarrow 2H(ad)$, waarbij de gasvormige en geadsorbeerde toestand van waterstof weergegeven zijn met respectievelijk (g) en (ad). Waterstofmoleculen (H_2) die het metaaloppervlak (M) bereiken, dissociëren aan het oppervlak en worden geadsorbeerd als H atomen (Fig. 1). De potentiële energie van H_2 is in Fig. 1 weergegeven met twee variabelen: de interatomaire afstand, d, en de hoogte tot het metaaloppervlak en dat het zwaartepunt altijd op de verticale gestippelde lijn in Fig. 1 ligt. Fig. 2 laat de contourplot van de potentiële energie ver in kJ per mol H_2 . De tussenruimte tussen twee ononderbroken lijnen is 20 kJ mol⁻¹. De nulpuntsvibratie-energie wordt buiten beschouwing gelaten.

NLD-1 C-1 Q-2

Fig.1 Definitie van de variabelen. De tekening is niet op schaal.

A.1 <u>**Kies v**</u>oor elk van de volgende punten (i)–(iii), de waarde uit A-G die het dichtst 6pt in de buurt ligt.

(i) De interatomaire afstand in een gasvormig H₂ molecuul. (ii) De interatomaire afstand tussen metaalatomen (d_M in Fig. 1). (iii) De afstand van geadsorbeerde H atomen tot het oppervlak (h_{ad} in Fig. 1)

> A. 0.03 nm B. 0.07 nm C. 0.11 nm D. 0.15 nm E. 0.19 nm F. 0.23 nm G. 0.27 nm

A.2KiesVoor elk van de volgende punten (i)-(ii), de waarde uit A-H die het dichtst4ptin de buurt ligt.(i) De energie die nodig is voor de dissociatie van gasvormig H2 tot gasvormig H [H2(g) \rightarrow 2H(g)].(ii) De energie die vrijkomt bij de adsorptie van gasvormig H2 [H2(g) \rightarrow 2H(ad)].(ii) De energie die vrijkomt bij de adsorptie van gasvormig H2 [H2(g) \rightarrow 2H(ad)].A. 20 kJ mol⁻¹B. 40 kJ mol⁻¹C. 60 kJ mol⁻¹D. 100 kJ mol⁻¹E. 150 kJ mol⁻¹F. 200 kJ mol⁻¹G. 300 kJ mol⁻¹H. 400 kJ mol⁻¹

NLD-1 C-1 Q-4

Onderdeel B

De geadsorbeerde waterstofatomen worden dan ofwel geabsorbeerd in de bulk, of recombineren tot $H_2(g)$ (= desorberen terug in de gasfase), zoals weergegeven in reacties (1a) en (1b). H(ab) geeft een waterstofatoom weer dat is geabsorbeerd in de bulk.

$$H_2(g) \stackrel{k_1}{\underset{k_2}{\longrightarrow}} 2H(ad)$$
(1a)

$$H(ad) \xrightarrow{k_3} H(ab)$$
(1b)

De reactiesnelheid per plaats aan het oppervlak voor adsorptie, desorptie en absorptie zijn respectievelijk $r_1[s^{-1}], r_2[s^{-1}]$ en $r_3[s^{-1}]$. Ze worden weergegeven als:

$$r_1 = k_1 P_{\mathsf{H}_2} (1 - \theta)^2 \tag{2}$$

$$r_2 = k_2 \theta^2 \tag{3}$$

$$r_3 = k_3 \theta \tag{4}$$

Waarbij k_1 [s⁻¹ Pa⁻¹], k_2 [s⁻¹] en k_3 [s⁻¹] de reactiesnelheidsconstanten zijn en P_{H_2} de druk van H₂. Van de beschikbare plaatsen aan het oppervlakte, is θ ($0 \le \theta \le 1$) de fractie die bezet is door H atomen. Er wordt aangenomen dat adsorptie en desorptie snel zijn in vergelijking met absorptie ($r_1, r_2 \gg r_3$) en dat θ constant is.

B.1 r_3 kan worden uitgedrukt als: 5pt $r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2}C}}}$ (5) <u>Druk</u> C <u>uit</u> in k_1 en k_2 .

Een metaalmonster met een oppervlakte van $S = 1.0 \times 10^{-3} \text{ m}^2$ is geplaatst in een bak van 1liter (1L = $1.0 \times 10^{-3} \text{ m}^3$) met H₂ ($P_{\text{H}_2} = 1.0 \times 10^2 \text{ Pa}$). Het aantal waterstofatomen dat aan het oppervlak was geadsorbeerd, was $N = 1.3 \times 10^{18} \text{ m}^{-2}$. De temperatuur van het oppervlak werd constant gehouden op T = 400 K. Terwijl de reacties (1a) en (1b) verliepen, nam P_{H_2} met een constante snelheid $v = 4.0 \times 10^{-4} \text{ Pa s}^{-1}$ af. Neem aan dat H₂ een ideaal gas is en dat het volume van het metaalmonster verwaarloosbaar is.

- **B.2** <u>**Bereken**</u> het aantal mol H atomen dat geabsorbeerd wordt per oppervlakte- 3pt eenheid en per tijdseenheid, $A \text{ [mol s}^{-1} \text{ m}^{-2} \text{]}$.
- **B.3** Bij een temperatuur T = 400 K, is C gelijk aan 1.0×10^2 Pa⁻¹. Bereken de waarde 3pt van k_3 bij 400 K. Als je geen antwoord hebt gevonden bij **B.2**, gebruik dan $A = 3.6 \times 10^{-7}$ mol s⁻¹ m⁻².
- **B.4** Bij een andere *T* is gegeven dat $C = 2.5 \times 10^3 \text{ Pa}^{-1}$ en $k_3 = 4.8 \times 10^{-2} \text{ s}^{-1}$. Kies uit (a)-(h) de juiste plot voor r_3 als een functie van P_{H_2} bij deze temperatuur.

Isotopen tijdcapsule

11% van het totaal								
Vraag	A.1	A.2	A.3	A.4	Totaal			
Punten	8	8	10	9	35			
Score								

Moleculen die alleen verschillen in isotopensamenstelling, zoals CH_4 en CH_3D , worden isotopologen genoemd. Isotopologen worden geacht dezelfde chemische eigenschappen te hebben. In de natuur is er echter een klein verschil.

Ga ervan uit dat alle stoffen die in deze opgave worden genoemd in de gasfase zitten.

Laten we het volgende evenwicht beschouwen:

$${}^{12}\mathsf{C}^{16}\mathsf{O}_2 + {}^{12}\,\mathsf{C}^{18}\mathsf{O}_2 \rightleftharpoons 2{}^{12}\mathsf{C}^{16}\mathsf{O}^{18}\mathsf{O} \qquad \qquad K = \frac{[{}^{12}\mathsf{C}^{16}\mathsf{O}^{18}\mathsf{O}]^2}{[{}^{12}\mathsf{C}^{16}\mathsf{O}_2][{}^{12}\mathsf{C}^{18}\mathsf{O}_2]} \tag{1}$$

De entropie, *S*, neemt toe met het toenemen van het aantal microscopische toestanden van het systeem, *W*:

$$S = k_{\rm B} \ln W \tag{2}$$

 $W = 1 \text{ voor } {}^{12}\text{C}{}^{16}\text{O}_2 \text{ en } {}^{12}\text{C}{}^{18}\text{O}_2$. Echter, $W = 2 \text{ voor een } {}^{12}\text{C}{}^{16}\text{O}{}^{18}\text{O}$ molecuul omdat de zuurstofatomen in dit molecuul verschillend zijn. Omdat aan de rechterkant van evenwicht 1 twee ${}^{12}\text{C}{}^{16}\text{O}{}^{18}\text{O}$ moleculen staan, geldt $W = 2^2 = 4$.

A.1 De enthalpieverandering, ΔH , van evenwicht 3 is positief en onafhankelijk van 8pt de temperatuur.

$$H_2 + DI \rightleftharpoons HD + HI$$
 (3)

Bereken de evenwichtsconstante, K, van evenwicht 3 bij een hele lage temperatuur (neem $T \rightarrow 0$) en bij een hele hoge temperatuur (neem $T \rightarrow +\infty$). Neem hierbij aan dat ΔH naar een constante waarde convergeert bij zeer hoge temperaturen.

De ΔH van het volgende evenwicht kan met moleculaire vibraties worden verklaard.

$$2HD \rightleftharpoons H_2 + D_2$$
 $K = \frac{[H_2][D_2]}{[HD]^2}$ (4)

De vibratie-energie, *E*, van een twee-atomig molecuul bij T = 0 K is gegeven door vergelijking 5 en de vibratiefrequentie, ν [s⁻¹], is gegeven door vergelijking 6:

$$E = \frac{1}{2}h\nu\tag{5}$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{6}$$

Hierin is k de bindingssterkte en μ de gereduceerde massa die bepaald wordt door de massa's van de twee atomen in het twee-atomige molecuul, m_1 en m_2 , volgens:

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{7}$$

A.2 Het golfgetal van de vibratie van H₂ bedraagt 4161.0 cm⁻¹ . **Bereken** de ΔH 8pt van het volgende evenwicht bij T = 0 K in J mol⁻¹.

$$2HD \rightarrow H_2 + D_2 \tag{8}$$

Neem aan dat:

- alleen de vibratie-energie bijdraagt aan de ΔH .
- de k voor H₂, HD, en D₂ hetzelfde is.
- de massa van een H atoom 1 Da en de massa van een D atoom 2 Da is.

De molaire verhouding van H₂, HD, en D₂ hangt af van de temperatuur in een systeem in evenwicht. De verandering van de molverhouding van D₂ is gedefinieerd als Δ_{D_2} .

$$\Delta_{\mathsf{D}_2} = \frac{R_{\mathsf{D}_2}}{R_{\mathsf{D}_2}^*} - 1 \tag{9}$$

Hierin verwijst R_{D_2} naar $\frac{[D_2]}{[H_2]}$ in het monster en $R_{D_2}^*$ naar $\frac{[D_2]}{[H_2]}$ bij $T \to +\infty$. Hierbij moet worden opgemerkt dat de verdeling van de isotopen willekeurig wordt bij $T \to +\infty$.

A.3 <u>Bereken</u> Δ_{D_2} met een natuurlijke D abundantie (is het relatieve voorkomen in de natuur) bij een temperatuur waarbij voor evenwicht 4 geldt *K* = 0.300. Neem aan dat de natuurlijke abundanties van D en H respectievelijk 1.5576×10^{-4} en $1 - 1.5576 \times 10^{-4}$ zijn.

NLD-1 C-2 Q-4

In het algemeen geldt dat de molaire verhouding van dubbel gesubstitueerde isotopologen met twee zware isotoopatomen in één molecuul toeneemt bij afname van de temperatuur. Laten we eens kijken naar de molaire verhouding in CO₂ moleculen met molaire massa van 44 en 47, hieronder aangegeven met CO₂[44] en CO₂[47]. De grootheid Δ_{47} is gedefinieerd als

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1 \tag{10}$$

 R_{47} verwijst naar $\frac{[CO_2[47]]}{[CO_2[44]]}$ in het monster en R_{47}^* naar $\frac{[CO_2[47]]}{[CO_2[44]]}$ bij $T \to +\infty$. De natuurlijke abundanties van de koolstof- en zuurstofatomen staan in onderstaande tabellen. Laat isotopen die niet getoond zijn buiten beschouwing.

	¹² C	¹³ C
natuurlijke abundantie	0.988888	0.011112

	¹⁶ O	¹⁷ O	¹⁸ O
natuurlijke abundantie	0.997621	0.0003790	0.0020000

De temperatuurafhankelijkheid van Δ_{47} kan als volgt worden berekend (de *T* is hier de absolute temperatuur in K) :

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \tag{11}$$

A.4 De R_{47} van fossiel plankton verkregen van uit de oceaan bij Antarctica bedraagt 9pt 4.50865×10^{-5} . Schat, door middel van een berekening de temperatuur met behulp van deze R_{47} . Deze temperatuur wordt geïnterpreteerdals de luchttemperatuur tijdens het tijdperk waarin het plankton leefde. Beschouw voor de berekening alleen de meest voorkomende isotopoloog van $CO_2[47]$.

Wet van Lambert-Beer?

8% van het totaal								
Vraag	A.1	B.1	B.2	Totaal				
Punten	10	6	6	22				
Score								

Laat in deze opgave de absorptie door de cuvet en het oplosmiddel buiten beschouwing. De temperatuur van alle oplossingen en gassen wordt constant gehouden op 25 °C.

Onderdeel A

Oplossing **X** werd gemaakt door HA en NaA op te lossen in water. De concentraties [A⁻], [HA], and [H⁺] in oplossing **X** zijn respectievelijk 1.00×10^{-2} mol L⁻¹, 1.00×10^{-3} mol L⁻¹ en 1.00×10^{-4} mol L⁻¹. Deze concentraties hangen met elkaar samen via het volgende zuur-base evenwicht:

$$\mathsf{HA} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+ \qquad \qquad K = \frac{[\mathsf{A}^-][\mathsf{H}^+]}{[\mathsf{HA}]} \tag{1}$$

De optische weglengte is l in onderdeel A. Laat de dichtheidsverandering door verdunning buiten beschouwing. Neem aan dat er, behalve de reactie in (1), geen andere reacties plaatsvinden.

A.1 De extinctie (Eng. absorbance, *A*) van **X** was A_1 , bij golflengte λ_1 . Vervolgens 10pt werd oplossing **X** verdund tot tweemaal zijn oorspronkelijke volume door zoutzuur met pH = 2.500 toe te voegen. Na het verdunnen was de extinctie nog steeds A_1 bij golflengte λ_1 . **Bepaal** de verhouding $\varepsilon_{HA}/\varepsilon_{A^-}$ bij golflengte λ_1 , waar ε_{HA} en ε_{A^-} staan voor de extinctiecoëfficiënten van respectievelijk HA en A⁻.

NLD-1 C-3 Q-2

Onderdeel B

We beschouwen het volgende evenwicht in de gasfase.

$$D \rightleftharpoons 2M$$
 (2)

Een balkvormige container met een transparante beweegbare wand met doorsnede *S* (zie onderstaande figuur) wordt gevuld met zuiver gas D bij een druk *P*. Het evenwicht stelt zich in bij constante druk *P*. De extinctie van het gas is $A = \varepsilon(n/V)l$, waar ε , *n*, *V*, en *l* staan voor respectievelijk de extinctie-coëfficiënt, de hoeveelheid gas in mol, het volume van het gas en de optische weglengte. Neem aan dat alle componenten van het gasmengsel zich gedragen als ideale gassen.

Gebruik waar nodig de volgende definities.

	Beginto	pestand	Evenwichtstoestand			
	D	М	D	М		
Partiële druk	Р	0	p_{D}	p_{M}		
Hoeveelheid in mol	n_0	0	n_{D}	n_{M}		
Volume	V ₀		V			

- **B.1** De extinctie van het gasmengsel bij golflengte λ_{B1} , gemeten vanuit de *x*-richting ($l = l_x$), was A_{B1} zowel in de begintoestand als in de evenwichtstoestand. **Bepaal** de verhouding $\varepsilon_D / \varepsilon_M$ bij golflengte λ_{B1} , waar ε_D en ε_M staan voor de extinctie-coëfficiënten van respectievelijk D en M.
- **B.2** De extinctie van het gasmengsel bij golflengte λ_{B2} , gemeten vanuit de *y* 6pt richting, was A_{B2} zowel in de begintoestand ($l = l_{y0}$) als in de evenwichtstoestand ($l = l_y$). **Bepaal** de verhouding $\varepsilon_D / \varepsilon_M$ bij golflengte λ_{B2} .

Redoxchemie van zink

11% van het totaal									
Vraag	A.1	A.2	B.1	B.2	B.3	B.4	Totaal		
Punten	6	5	4	3	5	9	32		
Score									

Zink wordt al lang gebruikt in legeringen als messing en voor staal. Het zink dat voorkomt in afvalwater wordt daaruit afgescheiden door middel van neerslagvorming. Zo wordt het water gezuiverd en de verkregen vaste stof wordt gereduceerd zodat zink als metaal wordt teruggewonnen en kan worden hergebruikt.

Onderdeel A

De evenwichten die betrokken zijn bij het oplossen van $Zn(OH)_2(s)$ bij 25 °C en de relevante evenwichtsconstanten zijn gegeven in de vergelijkingen 1–4.

$$\operatorname{Zn}(\operatorname{OH})_2(\mathbf{s}) \rightleftharpoons \operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^-(\operatorname{aq}) \qquad \qquad K_{\operatorname{sp}} = 1.74 \times 10^{-17}$$
 (1)

$$\operatorname{Zn}(\operatorname{OH})_2(\mathbf{s}) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_2(\operatorname{aq}) \qquad K_1 = 2.62 \times 10^{-6}$$
 (2)

$$\operatorname{Zn}(\operatorname{OH})_2(\mathsf{s}) + 2\operatorname{OH}^-(\operatorname{aq}) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_4^{2-}(\operatorname{aq}) \qquad \qquad K_2 = 6.47 \times 10^{-2} \tag{3}$$

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq) \qquad K_w = 1.00 \times 10^{-14}$$
(4)

De oplosbaarheid, *S*, van zink (concentratie van zink in een verzadigde oplossing) is gegeven in vergelijking 5.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$
(5)

- **A.1** Er is een pH-bereik waarin van de concentraties $[Zn^{2+}(aq)]$, $[Zn(OH)_2(aq)]$ en 6pt $[Zn(OH)_4^{2-}(aq)]$ die van $[Zn(OH)_2(aq)]$ het grootst is, wanneer de evenwichten van de vergelijkingen 1–4 zich hebben ingesteld. **Bereken** dat pH-bereik.
- **A.2** Een verzadigde oplossing van $Zn(OH)_2(s)$ met pH = 7.00 werd gemaakt en gefilterd. NaOH werd toegevoegd aan het filtraat zodat de pH tot 12.00 werd verhoogd. **Bereken** het molaire percentage van zink dat neerslaat wanneer de pH wordt verhoogd van 7.00 tot 12.00. Verwaarloos hierbij veranderingen in volume en temperatuur.

Onderdeel B

Vervolgens wordt het teruggewonnen zinkhydroxide verhit om zo zinkoxide te verkrijgen via onderstaande reactie:

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(I)$$
(6)

Het zinkoxide wordt daarna gereduceerd tot het metaal zink door de reactie met waterstof:

$$ZnO(s) + H_2(g) \rightarrow Zn(s) + H_2O(g) \tag{7}$$

B.1 Om ervoor te zorgen dat reactie (7) verloopt bij een waterstofdruk die op 1 bar 4pt wordt gehouden, is het noodzakelijk de partiële druk van de waterdamp die ontstaat te verminderen. **Bereken** de bovengrens van de partiële druk van waterdamp om reactie (7) bij 300 °C te laten verlopen. Gebruik hierbij de Gibbs vormingsenergieën van zinkoxide en van waterdamp bij 300 °C en 1 bar voor de gasvormige stoffen: $\Delta G_{ZnO}(300^{\circ}C) = -2.90 \times 10^{2} \text{ kJ mol}^{-1}$ en $\Delta G_{H_2O}(300^{\circ}C) = -2.20 \times 10^{2} \text{ kJ mol}^{-1}$.

Het metaal zink wordt gebruikt als materiaal voor de negatieve elektrode (anode) voor metaal-lucht batterijen. De elektrode bestaat uit Zn en ZnO. De onderstaande redoxreactie wordt gebruikt om elektriciteit te produceren met de elektromotorische kracht (bronspanning, e.m.k.), bij 25 °C en een druk van 1 bar, E° .

$$Zn(s) + \frac{1}{2}O_2(g) \to ZnO(s)$$
 $E^{\circ} = 1.65 V$ (8)

B.2 Een zink–lucht batterij werd gedurende 24 uur ontladen bij een stroomsterkte 3pt van 20 mA. <u>Bereken</u> de massaverandering van de negatieve elektrode (anode) van de batterij.

NLD-1 C-4 Q-3

B.3 We beschouwen nu de verandering van de de e.m.k van een zink-lucht batterij 5pt afhankelijk van de omgeving. <u>Bereken</u> de e.m.k. op de top van de berg Fuji, waar de temperatuur en hoogte respectievelijk –38 °C (februari) en 3776 m zijn. De atmosferische druk wordt weergegeven door de volgende vergelijking:

$$P\left[\mathsf{bar}\right] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \tag{9}$$

bij hoogte h [m] en temperatuur T [°C]. Het molaire peercentage van zuurstof in de atmosfeer is 21%. De verandering van de Gibbs energie voor reactie (8) is $\Delta G_{ZnO}(-38^{\circ}C) = -3.26 \times 10^{2} \text{ kJ mol}^{-1}$ bij $-38^{\circ}C$ en 1 bar.

B.4 <u>Bereken</u> de verandering van de Gibbs energie voor reactie (6) bij $25 \degree$ C. De standaardelektrodepotentialen, $E^{\circ}(Zn^{2+}/Zn)$ en $E^{\circ}(O_2/H_2O)$ bij $25 \degree$ C en 1 bar zijn respectievelijk gegeven als (10) en (11).

$$Zn^{2+} + 2e^- \rightarrow Zn$$
 $E^{\circ}(Zn^{2+}/Zn) = -0.77 V$ (10)

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 $E^{\circ}(O_2/H_2O) = 1.23V$ (11)

NLD-1 C-5 Q-1

Mysterieus silicium

12% van het totaal								
Vraag	A.1	A.2	A.3	A.4	B.1	B.2	B.3	Totaal
Punten	9	7	6	10	5	15	8	60
Score								

Hoewel silicium, net als koolstof, een element uit groep 14 is, heeft het heel andere eigenschappen.

Onderdeel A

In tegenstelling tot de koolstof-koolstof drievoudige binding is de silicium-silicium drievoudige binding (geformuleerd als R^1 -Si \equiv Si- R^1 met R een organische substituent) extreem reactief. Het reageert bijvoorbeeld met etheen waarbij een cyclisch product met een vierring gevormd wordt.

Als R^1 –Si \equiv Si– R^1 behandeld wordt met een alkyn (R^2 – $C \equiv C$ – R^2) wordt als eerste tussenproduct de verbinding **A** gevormd. **A** bestaat uit moleculen met een vierring. Verdere reactie van een ander molecuul R^2 – $C \equiv C$ – R^2 met **A** levert isomeren **B** en **C** op, die beide benzeenachtige cyclische geconjugeerde structuren hebben. Deze zogenoemde 'disilabenzenen' bevatten een zesring en kunnen opgeschreven worden als $(R^1$ –Si)₂ $(R^2$ –C)₄.

NLD-1 C-5 Q-2

$R^1-Si\equiv Si-R^1 + R^2-C\equiv C-R^2 \longrightarrow A \xrightarrow{R^2-C\equiv C-R^2} B + C$

De 13 C NMR analyse van de overeenkomstige zesringskeletten Si $_2$ C $_4$ toont twee signalen voor **B** en één signaal voor **C**.

- **A.1** <u>**Teken**</u> de structuurformules van **A**, **B**, en **C**. Gebruik hierbij R¹, R², Si en C. Geef 9pt van elke structuurformule één mogelijke resonantiestructuur.
- **A.2 Bereken** de aromatische stabilisatie-energie (ASE) van benzeen en **C** (voor het geval $R^1 = R^2 = H$) als positieve getallen. Gebruik hierbij de enthalpieveranderingen van enkele hydrogenering-reacties van onverzadigde systemen, die hieronder gegeven zijn in Figuur 1.

10pt

Als een oplossing van **C** in xyleen wordt verhit, ondergaat het isomerisatie. Er ontstaat een evenwichtsmengsel van verbindingen **D** en **E**. De molverhouding is **D** : **E** = 1 : 40.0 bij 50.0 °C en **D** : **E** = 1 : 20.0 bij 120.0 °C.

A.3 <u>**Bereken**</u> ΔH voor de omzetting van **D** naar **E**. Neem aan dat ΔH niet afhankelijk 6pt is van temperatuur.

De isomerisatie van **C** naar **D** en naar **E** gaat door middel van omzettingen van π -bindingen naar σ bindingen zonder dat σ -bindingen worden verbroken. Een ¹³C NMR analyse liet één signaal voor het Si₂C₄ skelet van **D** zien en twee signalen voor dat van **E**. Het skelet van **D** bevat geen drieringen, maar **E** heeft twee drieringen die een zijde delen.

A.4 Teken de structuurformules van **D** en **E** en gebruik daarbij R¹, R², Si en C.

Onderdeel B

Silicium kan hooggecoördineerde verbindingen (meer dan vier substituenten) vormen met elektronegatieve elementen zoals fluor. Net als metaalfluorides, die vaak gebruikt worden als fluoreringreagentia, kunnen hooggecoördineerde siliciumfluorides ook als fluoreringreagentia fungeren.

De fluoreringreactie van CCI_4 met Na_2SiF_6 werd als volgt uitgevoerd.

• Standaardisatie van Na₂SiF₆-oplossing:

Voorbereiding

Waterige oplossing **F**: 0.855 g Na₂SiF₆ (188.053 g mol⁻¹) opgelost in water (totaalvolume: 200 mL).

Waterige oplossing **G**: 6.86 g Ce₂(SO₄)₃ (568.424 g mol⁻¹) opgelost in water (totaalvolume: 200 mL).

· Procedure

Neerslagtitratie van oplossing **F** (50.0 mL) door druppelsgewijze toevoeging van oplossing **G** in aanwezigheid van xylenoloranje, wat coördineert met Ce^{3+} , als indicator. Na 18.8 mL van oplossing **G** toegevoegd te hebben verandert de kleur van de oplossing van geel naar magenta. Het gevormde neerslag is een binaire verbinding die Ce^{3+} bevat. De enige gevormde siliciumverbinding is $Si(OH)_4$.

B.1	<u>Geef</u> de vergelijking voor de reactie van Na_2SiF_6 met $Ce_2(SO_4)_3$.	5pt
-----	---	-----

• Reactie van CCl₄ met Na₂SiF₆:

(Verliezen door bijv. verdamping zijn verwaarloosbaar tijdens de volgende handelingen.)

Na₂SiF₆ (*x* [g]) werd toegevoegd aan CCl₄ (500.0 g) en verwarmd tot 300 °C in een afgesloten drukbestendig reactievat. Het ongereageerde Na₂SiF₆ en gevormde NaCl werden verwijderd door filtratie. Het filtraat werd verdund tot een totaalvolume van 1.00 L met CCl₄ (oplossing **H**). De ²⁹Si en ¹⁹F NMR spectra van oplossing **H** lieten zien dat SiF₄ de enige siliciumverbinding was. Bovendien waren in het ¹⁹F NMR spectrum signalen van CFCl₃, CF₂Cl₂, CF₃Cl, en CF₄ te zien (zie Tabel 1). De integratieverhoudingen in het ¹⁹F NMR spectrum zijn recht evenredig met het aantal fluorkernen.

NLD-1 C-5 Q-4

Tabel 1						
¹⁹ F NMR data	CFCl ₃	CF ₂ Cl ₂	CF ₃ Cl	CF ₄		
Integratieverhouding	45.0	65.0	18.0	2.0		

 SiF_4 kan gehydrolyseerd worden om H_2SiF_6 te vormen volgens vergelijking 8:

$$3SiF_4 + 2H_2O \rightarrow SiO_2 + 2H_2SiF_6 \tag{8}$$

Oplossing **H** (10 mL) werd toegevoegd aan een overmaat water, wat leidde tot de complete hydrolyse van SiF₄. Na scheiding werd de bij de hydrolyse gevormde H_2SiF_6 in de waterige oplossing geneutraliseerd en volledig omgezet tot Na₂SiF₆ (waterige oplossing **J**).

Het neerslag van ongereageerd Na_2SiF_6 en NaCl, dat na de eerdere reactie door filtratieverwijderd was (onderstreept; zie vorige pagina), werd volledig opgelost in water, wat een waterige oplossing opleverde (oplossing **K**; 10.0 L).

Daarna werden extra neerslagtitraties uitgevoerd met oplossing G, en de eindpunten van de titraties met G waren als volgt:

•Voor oplossing **J** (volledige hoeveelheid): 61.6 mL.

·Voor 100 mL van oplossing **K**: 44.4 mL.

Hierbij dient te worden opgemerkt dat het gelijktijdig aanwezig zijn van NaCl of SiO₂ geen effect heeft op de neerslagtitratie.

- **B.2** <u>Bereken</u> de massa van de NaCl geproduceerd in het reactievat (zie de onderstreepte informatie op de vorige pagina), en <u>bereken</u> de massa (*x* [g]) van de Na₂SiF₆ gebruikt als beginstof.
- **B.3** 77.8% van de CCl_4 gebruikt als beginstof had niet gereageerd. **Bereken** de massavan het gevormde CF_3Cl .

De Vastestofchemie van Overgangsmetalen

	13% van het totaal										
Vraag	A.1	A.2	A.3	B.1	B.2	B.3	B.4	C.1	C.2	C.3	Totaal
Punten	6	3	3	6	4	4	4	5	5	5	45
Score											

Vulkaan op het eiland Sakurajima

Onderdeel A

Japan is wereldwijd een van de landen met het grootste aantal vulkanen. Wanneer silicaten kristalliseren vanuit magma, wordt een deel van de overgangsmetaal-ionen (M^{n+}) in het magma opgenomen in de silicaten. De onderzochte M^{n+} in deze opgave zijn gecoördineerd door oxide-ionen (O^{2-}). De M^{n+} nemen een vier-gecoördineerde tetraëdische (T_d) geometrie aan in het magma en een zes-gecoördineerde octaëdrische (O_h) geometrie in de silicaten. Beide vertonen een hoogspin elektronenconfiguratie.

De verdelingsconstante van de verdeling van M^{n+} tussen de silicaten en het magma, D, kan als volgt worden weergegeven:

$$D = \frac{[M]_s}{[M]_1}$$

Hierin zijn $[M]_s$ en $[M]_l$ de concentraties van M^{n+} in respectievelijk de silicaten en het magma. In de tabel hieronder staan als voorbeeld, de waarden van D van Cr^{2+} en Mn^{2+} .

NLD-1 C-6 Q-2

Stel dat Δ_0 en CFSE^O de energieverschillen zijn van respectievelijk de d-orbitalen van Mⁿ⁺ en de kristalveld-stabilisatie-energie in een O_h veld. Stel dat Δ_T en CFSE^T deze waarden zijn in een T_d veld.

A.1 <u>**Bereken**</u> | CFSE^O – CFSE^T | = Δ CFSE uitgedrukt in Δ_O voor Cr²⁺, Mn²⁺ en Co²⁺. 6pt Neem aan dat Δ_T = 4/9 Δ_O .

Metaaloxiden MO (M: Ca, Ti, V, Mn of Co) kristalliseren in een steenzout structuur waarin de Mⁿ⁺ een O_h geometrie aanneemt met een hoogspin elektronenconfiguratie. De roosterenthalpie van deze oxiden wordt voornamelijk bepaald door de Coulomb-interactie, gebaseerd op de straal en lading van de ionen, en een aantal bijdragen van de CFSE van Mⁿ⁺ in het O_h veld.

A.3	<u>Kies</u> de juiste set rooster-enthalpieën [kJ mol ^{–1}] uit één van de opties (a) tot en met (f).	3pt

	CaO	TiO	VO	MnO	CoO
(a)	3460	3878	3913	3810	3916
(b)	3460	3916	3878	3810	3913
(c)	3460	3913	3916	3810	3878
(d)	3810	3878	3913	3460	3916
(e)	3810	3916	3878	3460	3913
(f)	3810	3913	3916	3460	3878

Q6-3 Nederlands (Netherlands)

NLD-1 C-6 Q-3

NLD-1 C-6 Q-4

Onderdeel B

Een gemengd oxide **A** dat La³⁺ en Cu²⁺ bevat, kristalliseert in een tetraëdische eenheidscel, zie Fig. 1. In de [CuO₆] octaëder is de Cu–O lengte langs de *z*-as (l_z) langer dan die langs de *x*-as (l_x) en [CuO₆] is vervormd in vergelijking met de normale O_h geometrie. Deze vervorming verwijdert de degeneratie van de e_q orbitalen ($d_{x^2-y^2}$ en d_{z^2}).

A kan worden gesynthetiseerd door thermische ontleding (pyrolyse) van complex **B**, dat gevormd is door het mengen van metaalchloriden in een verdunde waterige ammoniak-oplossing die kwadraatzuur $C_4H_2O_4$, d.w.z. een dizuur, bevat. De pyrolyse-eigenschappen van **B** in droge lucht laten een massa-afname zien van 29.1% tot 200 °C veroorzaakt door het verlies van kristalwater, gevolgd door wederom een massa afname tot 700 °C veroorzaakt door het vrijkomen van CO_2 . De totale massa afname gedurende de vorming van **A** uit **B** is 63.6%. Tijdens de pyrolyse reactie komen alleen water en CO_2 vrij.

B.1	<u>Geef</u> de formules van A en B .	6pt
B.2	<u>Bereken</u> l_x en l_z met behulp van Fig. 1.	4pt
В.3	Voer de volgende opdrachten uit voor Cu^{2+} in de vervormde $[CuO_6]$ octaëder in A in Fig. 1: • <u>Schrijf</u> de namen van de gesplitste e_g orbitalen $(d_{x^2-y^2} en d_{z^2})$ bij (i) en (ii) <u>en;</u> • <u>Teken</u> de elektronenconfiguratie in het gestippelde vak op je antwoord- blad.	4pt

Q6-5 Nederlands (Netherlands)

NLD-1 C-6 Q-5

A is een isolator. Wanneer één La³⁺ gesubstitueerd wordt door één Sr²⁺, ontstaat er één gat in het kristalrooster dat elektrische stroom kan geleiden. Hierdoor is Sr²⁺-gedoteerd **A** een supergeleider onder 38K. Bij een substitutiereactie van **A** zijn 2.05×10^{27} gaten m⁻³ ontstaan.

 B.4 <u>Bereken</u> met behulp van de molverhouding in de substitutiereactie het percentage La³⁺ dat gesubstitueerd is door Sr²⁺
 NB: de valenties van de andere ionen en de kristalstructuur veranderen niet tijdens de substitutiereactie.

Onderdeel C

 $Cu_2(CH_3CO_2)_4$ bestaat uit vier $CH_3CO_2^-$ gecoördineerd met twee Cu^{2+} (Fig. 2A). $Cu_2(CH_3CO_2)_4$ heeft een hoge mate van structuursymmetrie, met twee assen die door de koolstofatomen van de vier $CH_3CO_2^-$ lopen en een as die door de twee Cu^{2+} loopt. Alle assen staan loodrecht ten opzichte van elkaar. Wanneer een dicarboxylaatligand gebruikt wordt in plaats van $CH_3CO_2^-$, ontstaat er een "kooicomplex". Het kooicomplex $Cu_4(L1)_4$ bestaat uit vlak dicarboxylaat L1 (Fig. 2B) en Cu^{2+} (Fig. 2C). De hoek θ tussen de coördinatierichtingen van de twee carboxylaatgroepen, aangegeven met de pijlen in Fig. 2B, bepaalt de structuur van het kooicomplex. De θ is 0° bij L1. NB: de waterstofatomen zijn niet weergegeven in Fig. 2.

Fig. 2

NLD-1 C-6 Q-6

Een zinkcomplex, $Zn_4O(CH_3CO_2)_6$, bevat vier tetraëdische Zn^{2+} , zes $CH_3CO_2^-$ en één O^{2-} (Fig. 3A). In $Zn_4O(CH_3CO_2)_6$ bevindt O^{2-} zich in de oorsprong en de drie assen die door de koolstofatomen van $CH_3CO_2^-$ lopen, staan loodrecht ten opzichte van elkaar. Wanneer *p*-benzeendicarboxylaat (Fig. 3B, **L3**, θ = 180°) gebruikt wordt in plaats van $CH_3CO_2^-$, koppelen de Zn^{2+} clusters aan elkaar waarbij ze een kristallijne vaste stof (**X**) vormen, genaamd "poreus coördinatie polymeer" (Fig. 3C). De samenstelling van **X** is $[Zn_4O(L3)_3]_n$ en het heeft een kubische kristalstructuur met nano-formaat poriën. Een porie wordt weergegeven als een bol in Fig. 3D en elk tetraëdisch Zn^{2+} cluster wordt weergegeven als een donkergrijs veelvlak in Fig. 3C en 3D. Merk op de de waterstofatomen niet zijn weergegeven in Fig. 3.

- **C.2 X** heeft een kubische eenheidscel waarvan de lengte van de ribbe gelijk is aan 5pt a (Fig. 3C). De dichtheid van **X** is 0.592 g cm⁻³. **Bereken** a in [cm].
- **C.3 X** bevat een aanzienlijk aantal poriën en bij 1 bar en 25 °C kan 1 g **X** 3.0×10^2 mL 5pt CO₂ gas bevatten in de poriën . **Bereken** het gemiddelde aantal CO₂ moleculen per porie.

Spelen met niet-benzeenachtige aromaticiteit

13% van het totaal						
Vraag	A.1	A.2	A.3	B.1	Totaal	
Punten	5	2	19	10	36	
Score						

Professor Nozoe (1902-1996) startte met het onderzoek omtrent niet-benzeenachtige aromatische verbindingen, die nu veelvoorkomend zijn in de organische chemie.

Foto geleverd door: Tohoku universiteit

Onderdeel A

Lineariifolianone is een natuurproduct met een unieke structuur, dat geïsoleerd kan worden uit *Inula linariifolia*. Men kan via een één-staps synthese valencene (**1**) omzetten tot **2** dat na een drie-staps synthese via **3** uiteindelijk keton **4** oplevert. Eremophilene (**5**) wordt omgezet tot **6** door dezelfde vier synthesestappen uit te voeren.

NLD-1 C-7 Q-2

Inula linariifolia

A.1 <u>Teken</u> de structuurformules van **2** en **6**. Laat, waar nodig, de stereochemie dui- 5pt delijk uitkomen.

Daarna wordt keton **4** omgezet tot ester **15**. Verbinding **8** (molecuulmassa: 188 u) behoudt dezelfde stereochemie als **7**. Verbindingen **9** en **10** hebben 5 stereocentra en geen koolstof-koolstof dubbele bin-

dingen. Ga ervan uit dat H_2^{18} O in plaats van H_2^{16} O gebruikt wordt voor de synthese van ¹⁸O-gelabelde lineariifolianonen **13** en **14** uit respectievelijk **11** en **12**. De verbindingen **13** en **14** zijn ¹⁸O- gelabelde isotopomeren. Als men afziet van isotooplabels, leveren **13** en **14** beide hetzelfde product (**15**) op met identieke stereochemie.

Onderdeel B

Verbinding **19** wordt gesynthetiseerd zoals hieronder is weergegeven. In het onderzoeksveld van de niet-benzeenachtige aromaticiteit kan **19** gebruikt worden als een activator voor alcoholen. Verbinding **20** werd omgezet tot **22** via het ion-paar intermediair **21**. Hoewel de vorming van **21** werd aangetoond, gebruikmakend van NMR, ontleedt **21** geleidelijk waarbij **18** en **22** gevormd worden.

B.1 <u>**Teken**</u> de structuurformules van **17-19** en **21**. Het is niet nodig om de stereo- 10pt chemie weer te geven.

Dynamische Organische Moleculen en hun Chiraliteit

11% van het totaal						
Vraag	A.1	A.2	A.3	B.1	B.2	Totaal
Punten	9	3	7	3	4	26
Score						

Onderdeel A

Polycyclische aromatische koolwaterstoffen met opeenvolgende ortho-bindingen worden [n]carbohelicenen genoemd (n is het aantal zesringen) (zie hieronder). [4]Carbohelicene (**[4]C**) wordt efficiënt bereid via een route waarbij de onderstaande fotoreactie gebruikt wordt, via een intermediair (**Int.**) dat gemakkelijk door jood geoxideerd wordt.

De fotoreactie vindt plaats op een wijze die lijkt op het volgende voorbeeld.

NLD-1 C-8 Q-2

Opmerking: Teken in de gehele opgave 8 alternerende enkele en dubbele bindingen in je antwoorden, zoals te zienis in de voorbeeldafbeeldingen van carbohelicene. Gebruik geen cirkels voor geconjugeerde π systemen.

- **A.1** <u>**Teken**</u> de structuurformules van **A–C**. Maak hierbij onderscheid tussen stereo- 9pt isomeren.
- **A.2** Pogingen om [5]carbohelicene te synthetiseren uit hetzelfde fosfoniumzout en een geschikte beginstof resulteerde nauwelijks in de vorming van [5]carbohelicene. In plaats daarvan werd product **D** gevormd met een molecuulmassa die 2 Da lager was dan die van [5]carbohelicene. De ¹H NMR chemische verschuivingen van **D** zijn hieronder gegeven. <u>Teken</u> de structuurformule van **D**. [**D** (δ , ppm in CS₂, kamertemperatuur), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]

[5]- en grotere [n]carbohelicenen hebben helische chiraliteit en de overgang tussen enantiomeren van deze helicenen is langzaam bij kamertemperatuur. De chiraliteit van [n]carbohelicenen wordt aangegeven met (*M*) of (*P*) zoals hieronder is weergegeven.

Voor [n]carbohelicenen met n groter dan 4 kunnen de enantiomeren gescheiden worden door middel van chirale kolomchromatografie, ontwikkeld door Prof. Yoshio Okamoto.

Foto met dank aan: The Japan Prize Foundation

Q8-3 Nederlands (Netherlands)

Meervoudige helicenen zijn moleculen die twee of meer heliceen-achtige structuurelementen bevatten. Als de helische chiraliteit in beschouwing wordt genomen, heeft een meervoudig heliceen een aantal stereo-isomeren. Bijvoorbeeld, verbinding **E** bevat drie [5]carboheliceenachtige eenheden in een molecuul. Een van de stereo-isomeren is beschreven als (*P*, *P*, *P*), zoals hieronder afgebeeld.

A.3 Onder invloed van een nikkelverbinding trimeriseert 1,2-dibroombenzeen tot trifenyleen. Wanneer dezelfde reactie wordt uitgevoerd met een enantiomeer van **F**, (*P*)-**F**, wordt het meervoudige heliceen **G** ($C_{66}H_{36}$) verkregen. Gegeven is dat de overgang tussen stereo-isomeren niet plaatsvindt gedurende de reactie. <u>Identificeer</u> alle mogelijke stereo-isomeren van **G** die gevormd worden in dit proces, zonder dubbelingen. Als referentie moet één isomeer volledig getekend worden met de chiraliteit zoals in bovenstaand voorbeeld, met genummerde labels. De andere stereo-isomeren moeten gegeven worden met plaatsnummers en labels voor *M* en *P*. Bijvoorbeeld, de overige stereo-isomeren van **E** zouden gegeven moeten worden als (1, 2, 3) = (*P*, *M*, *P*), (*P*, *M*, *M*), (*M*, *M*, *M*), (*M*, *M*, *P*), (*M*, *P*, *P*), en (*M*, *P*, *M*).

NLD-1 C-8 Q-3

Q8-4 Nederlands (Netherlands)

Onderdeel B

Sumanene is een komvormige koolwaterstof die voor het eerst in 2003 in Japan werd gerapporteerd. De naam "sumanene" is afgeleid van het woord "suman", dat in Sanskrit-Hindi voor zonnebloem staat. De synthese van sumanene werd bewerkstelligd door een reeks reacties bestaande uit ringopening en ringsluiting door middel van metathese.

NLD-1 C-8 Q-4

Representatieve metathesereacties gekatalyseerd door een rutheniumkatalysator (Ru*) zijn hieronder afgebeeld.

B.1 <u>**Teken**</u> de structuurformule van intermediair **I** (het weergeven van de stereo- 3pt chemie van **I** is hierbij niet nodig).

optisch actieve derivaat van sumaneen **K**. De stereocentra in **J** ondergaan geen inversie tijdens de metathesereactie. <u>Teken</u> de structuur van **K** met de daarbij behorende stereochemie.

Wel of geen capsule

10% van het totaal						
Vraag	A.1	A.2	A.3	A.4	A.5	Totaal
Punten	13	2	2	3	3	23
Score						

Je hoort het eigenlijk niet te doen, maar als je een tennisbal op een bepaalde manier kapotknipt, kan je hem uit elkaar halen in twee U-vormige stukken.

Gebaseerd op dit idee zijn verbindingen **1** en **2** gesynthetiseerd als U-vormige moleculen van verschillende grootte. Verbinding **3** werd gesynthetiseerd om deze te vergelijken met **1**. Het inkapselingsgedrag van deze verbindingen werd onderzocht.

De syntheseroute naar **2** is hieronder afgebeeld. De elementenanalyse van **9** geeft de volgende massapercentages: C 40.49%, H 1.70% en O 17.98%.

NLD-1 C-9 Q-3

A.1 <u>**Teken**</u> de structuurformules van **4-9.** Houd hierbij geen rekening met stereochemie. Gebruik, net als in het schema hierboven, "PMB" als substituent in plaats van het volledig tekenen van de *p*-methoxybenzyl groep.

NLD-1 C-9 Q-4

In het massaspectrum van **1** was de ionpiek die overeenkomt met het dimeer (1_2) duidelijk te zien, terwijl in het spectrum van **3** een ionpiek van 3_2 niet aanwezig was. In het ¹H NMR spectrum van een oplossing van 1_2 , waren alle NH-protonen afkomstig van **1** chemisch equivalent, en hun chemische verschuiving was significant anders dan die van de NH-protonen van **3**. Deze data wijzen erop dat er waterstofbruggen gevormd worden tussen de NH-groepen van **1** en atomen **X** van een ander molecuul van verbinding **1** om zo een dimere capsule te vormen.

A.2	<u>Omcirkel</u> elk (van de) betreffend(e) atoom/atomen X in 1 .	2pt
A.3	<u>Geef</u> het aantal waterstofbruggen in de dimere capsule (1_2).	2pt

NLD-1 C-9 Q-5 NLD-1 C-9 Q-5

De dimere capsule van $1(1_2)$ heeft een interne ruimte waarin een passend klein molecuul Z ingekapseld kan worden. Dit fenomeen wordt beschreven door de volgende vergelijking:

$$\mathsf{Z} + \mathbf{1}_2 \to \mathsf{Z} @ \mathbf{1}_2 \tag{1}$$

De evenwichtsconstante van de inkapseling van Z in $\mathbf{1}_2$ is hieronder gegeven:

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{1}_2]}{[\mathsf{Z}][\mathbf{1}_2]} \tag{2}$$

Inkapseling van een molecuul in een capsule kan gevolgd worden met NMR spectroscopie. Bijvoorbeeld, 1_2 in C₆D₆ geeft verschillende signalen in de ¹H NMR spectra vóór en na de toevoeging van CH₄.

Verbinding **2** vormt ook een rigide en grotere dimere capsule (2_2). Het ¹H NMR spectrum van 2_2 werd gemeten in C₆D₆, C₆D₅F, en in een mengsel van C₆D₆ en C₆D₅F, waarbij alle andere condities constant werden gehouden. De chemische verschuivingen behorende bij proton H^a van **2** in de bovengenoemde oplosmiddelen zijn hieronder samengevat. Behalve de vermelde signalen, zijn geen andere signalen behorende bij H^a in **2** waargenomen. Neem aan dat de binnenkant van de capsule altijd gevuld is met het maximale aantal mogelijke moleculen van het oplosmiddel en dat elk signaal overeenkomt met één soort gevulde capsule.

oplosmiddel	δ (ppm) van H ^a
C ₆ D ₆	4.60
C ₆ D ₅ F	4.71
C ₆ D ₆ / C ₆ D ₅ F	4.60, 4.71, 4.82

A.4 Bepaal het aantal C_6D_6 en C_6D_5F moleculen dat ingekapseld is in 2_2 uitgaande 3pt van elk H^a signaal.

Q9-6 Nederlands (Netherlands)

NLD-1 C-9 Q-6

¹H NMR metingen in C₆D₆ laten zien dat 2₂ één molecuul 1-adamantaancarbonzuur (AdA) kan incorporeren. De associatieconstanten (K_a) die hieronder weergegeven zijn, zijn bepaald voor verschillende temperaturen. [solvent@2₂] geeft een deeltje weer dat één of meer moleculen van het oplosmiddel bevat.

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{2}_2]}{[\mathsf{Z}][\mathsf{solvent}@\mathbf{2}_2]} \tag{3}$$

Op dezelfde manier zijn ook de K_a waarden van CH₄ en $\mathbf{1}_2$, gegeven door vergelijking (2), bepaald bij verschillende temperaturen in C₆D₆ door middel van ¹H NMR metingen. De plots van deze twee associatieconstanten (als ln K_a vs 1/T) zijn hieronder weergegeven.

Er is geen C_6D_6 molecuul ingekapseld in 1_2 . In lijn **II**, is de entropieverandering (ΔS) ...(1)... en de enthalpieverandering (ΔH) ...(2)... . Dit wijst erop dat de drijvende kracht voor de inkapseling in lijn **II** ...(3)... is. Daarom hoort lijn **I** bij ...(4)... , en hoort lijn **II** bij ...(5)... .

	A	В	
(1)	positief	negatief	
(2)	positief	negatief	
(3)	ΔS	ΔH	
(4)	1_2 en CH $_4$	2_2 en AdA	
(5)	1_2 en CH ₄	2_2 en AdA	